Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sema Öztürk, ${ }^{\text {a }}$ Mustafa

Saçmacı, ${ }^{\text {b }}$ Sevket Hakan
Üngören, ${ }^{\text {b }}$ Mehmet Akkurt, ${ }^{\text {a* }}$
Hoong-Kun Fun ${ }^{\text {c }}$ and Yunus Akçamur ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Yozgat Faculty of Arts and Sciences, Erciyes University, Yozgat, Turkey, and ${ }^{\text {c } X \text {-ray Crystallography }}$ Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.078$
$w R$ factor $=0.257$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2(R)-Hydroxy-4-(4-methoxybenzoyl)-2-methoxycarbonylmethyl-5-(4-methoxy-phenyl)-1-(2-methylphenyl)-2,3-dihydro-1H-3-pyrrolone

The title compound, $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{7}$, has a non-planar configuration. The methoxycarbonylmethyl group exhibits an E configuration. The crystal structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Comment

The title compound, (I), is a derivative of 2,3-dihydro-1H-3pyrrolone, which exhibits antimicrobiological and pharmacological activity (Koz'minykh et al., 2002). The bond lengths and angles in (I) (Table 1) are within normal ranges (Allen et al., 1987). The methoxycarbonylmethyl group exhibits an E configuration. Compound (I) contains four planar rings, viz A, B, C and D (Fig. 1). In the pyrrolone ring A, the maximum deviation from planarity is 0.028 (3) \AA for $C 2$. The dihedral angles between rings $A / B, A / C, A / D, B / C, B / D$ and C / D are 34.6 (1), 72.0 (2), 74.2 (1), $59.6(2), 80.3(1)$ and $40.1(2)^{\circ}$, respectively.

(I)

The crystal structure of (I) is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular contacts (Table 2).

Experimental

A mixture of 4-(4-methoxybenzoyl)-2-[(Z)-methoxycarbonylmethyl-ene]-5-(4-methoxyphenyl)-2,3-dihydro-3-furanone $(2.213 \mathrm{~g}, 5 \mathrm{mmol})$ and o-toluidine ($0.536 \mathrm{~g}, 5 \mathrm{mmol}$) in dry benzene (25 ml) was refluxed for 0.5 h . The solid obtained after evaporation of the solvent was recrystallized from ethanol to give yellow crystals of $2(R)$-hydroxy-4-(4-methoxybenzoyl)-2-methoxycarbonylmethyl-5-(4-methoxy-phenyl)-1-(2-methylphenyl)-2,3-dihydro-1 H-3-pyrrolone; yield: $1.574 \mathrm{~g}(59 \%)$, m.p: 442 K . Solvents were dried by refluxing with the appropriate drying agent and distilled before use. Melting points were determined on an Electrothermal 9200 apparatus and were uncorrected. Elemental analysis was performed with a Carlo Erba Elemental Analyzer 1108. An FT-IR spectrum was measured on a Jasco-Plus Model 460 spectrometer, using a potassium bromide pellet. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a GeminiVarian 200 MHz instrument. The chemical shifts are reported in p.p.m. referenced to tetramethylsilane. FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v=$ $3200.29(\operatorname{broad} \mathrm{OH}), 1740.92(\mathrm{C} 20=\mathrm{O}), 1653.66(\mathrm{C} 22=\mathrm{O}), 1633.41$

Received 12 May 2003
Accepted 19 May 2003
Online 31 May 2003
$(\mathrm{C} 2=\mathrm{O}), 1257.84(\mathrm{C} 20-\mathrm{O} 4-\mathrm{C} 21) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.) : $\delta=$ $2.181\left(s, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{3}\right), 2.806-3.081\left(q, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.528,3.666,3.813$ $\left(s, 9 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.901(s, 1 \mathrm{H}, \mathrm{OH}), 6.885-7.942(m, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, p.p.m.): $\delta=20.895$ (C18), 41.927 (C19), 54.230, 57.180, 57.384 (C21, C29 and C11), 92.432 (C1), 110.032-165.105 (C=C, aromatic and aliphatic), $181.055(\mathrm{C} 20=\mathrm{O}), 190.213(\mathrm{C} 22=\mathrm{O})$, $198.213(\mathrm{C} 2=\mathrm{O})$. Analysis calculated for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{7}: \mathrm{C} 69.78, \mathrm{~N}$ 2.62, H 6.61%; found: C $69.65, \mathrm{~N} 2.56$, H 6.59%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{7} \\
& M_{r}=501.52 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.948(5) \AA \\
& b=11.254(5) \AA \\
& c=13.724(5) \AA \\
& \alpha=110.167(5)^{\circ} \\
& \beta=93.755(5)^{\circ} \\
& \gamma=90.106(5)^{\circ} \\
& V=1294.1(10) \AA^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.287 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 2345 reflections
$\theta=5.7-53.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, yellow
$0.28 \times 0.24 \times 0.18 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer

ω scans

Absorption correction: refined from
ΔF (Parkin et al., 1995)
$T_{\min }=0.975, T_{\max }=0.984$
8181 measured reflections

5384 independent reflections
2742 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.3^{\circ}$
$h=-11 \rightarrow 11$
$k=-15 \rightarrow 14$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.078$
$w R\left(F^{2}\right)=0.257$
$S=1.00$
5384 reflections
322 parameters

H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1411 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C1	1.413 (4)	O6-C29	1.409 (8)
$\mathrm{O} 2-\mathrm{C} 2$	1.232 (4)	O7-C8	1.367 (5)
O3-C20	1.194 (5)	O7-C11	1.401 (6)
O4-C20	1.318 (5)	N1-C4	1.351 (4)
O4-C21	1.444 (7)	N1-C12	1.411 (4)
O5-C22	1.223 (4)	N1-C1	1.488 (4)
O6-C26	1.347 (6)		
C20-O4-C21	115.9 (4)	N1-C4-C3	113.1 (2)
C26-O6-C29	119.2 (4)	N1-C4-C5	121.0 (3)
C8-O7-C11	118.6 (3)	O7-C8-C7	116.0 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	109.0 (2)	O7-C8-C9	124.8 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12$	122.3 (3)	N1-C12-C13	117.4 (4)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 12$	127.6 (3)	N1-C12-C17	122.6 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	108.7 (3)	O3-C20-O4	122.9 (4)
O1-C1-C19	109.4 (2)	O4-C20-C19	111.5 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	108.6 (3)	O3-C20-C19	125.6 (4)
N1-C1-C19	113.3 (3)	O5-C22-C23	121.0 (3)
N1-C1-C2	102.0 (2)	O5-C22-C3	121.1 (3)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	130.1 (3)	O6-C26-C25	123.7 (4)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	121.6 (2)	O6-C26-C27	116.5 (4)
$\mathrm{C} 21-\mathrm{O} 4-\mathrm{C} 20-\mathrm{O} 3$	0.8 (7)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	64.7 (4)
C21-O4-C20-C19	-177.2 (5)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-109.9 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	111.9 (3)		

An ORTEP drawing of (I), showing the labelling of the non-H atoms. Displacement ellipsoids are drawn at the 10% probability level.

Table 2
Intermolecular contacts $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.98	$2.681(4)$	143
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 9 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.58	$3.485(6)$	165
$\mathrm{C} 19-\mathrm{H} 19 A \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.59	$3.282(5)$	128

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $1-x, 1-y, 2-z$.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

This study was financially supported by the Research Center of Erciyes University. MS and HU thank Dr Hasan Seçen and Dr Cavit Kazaz for helpful discussions.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Koz'minykh, V. O., Igidov, N. M., Zykova, S. S., Kolla, V. \’E., Shuklina, N. S. \& Odegova, T. F. (2002). Pharm. Chem. J. 36, 188-191.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Parkin, S., Moezzi, B. \& Hope. H. (1995). J. Appl. Cryst. 28, 53-56.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

